Binocular vision, the optic chiasm, and their associations with vertebrate motor behavior
نویسنده
چکیده
Ipsilateral retinal projections (IRP) in the optic chiasm (OC) vary considerably. Most animal groups possess laterally situated eyes and no or few IRP, but, e.g., cats and primates have frontal eyes and high proportions of IRP. The traditional hypothesis that bifocal vision developed to enable predation or to increase perception in restricted light conditions applies mainly to mammals. The eye-forelimb (EF) hypothesis presented here suggests that the reception of visual feedback of limb movements in the limb steering cerebral hemisphere was the fundamental mechanism behind the OC evolution. In other words, that evolutionary change in the OC was necessary to preserve hemispheric autonomy. In the majority of vertebrates, motor processing, tactile, proprioceptive, and visual information involved in steering the hand (limb, paw, fin) is primarily received only in the contralateral hemisphere, while multisensory information from the ipsilateral limb is minimal. Since the involved motor nuclei, somatosensory areas, and vision neurons are situated in same hemisphere, the neuronal pathways involved will be relatively short, optimizing the size of the brain. That would not have been possible without, evolutionary modifications of IRP. Multiple axon-guidance genes, which determine whether axons will cross the midline or not, have shaped the OC anatomy. Evolutionary change in the OC seems to be key to preserving hemispheric autonomy when the body and eye evolve to fit new ecological niches. The EF hypothesis may explain the low proportion of IRP in birds, reptiles, and most fishes; the relatively high proportions of IRP in limbless vertebrates; high proportions of IRP in arboreal, in contrast to ground-dwelling, marsupials; the lack of IRP in dolphins; abundant IRP in primates and most predatory mammals, and why IRP emanate exclusively from the temporal retina. The EF hypothesis seams applicable to vertebrates in general and hence more parsimonious than traditional hypotheses.
منابع مشابه
13-P130 Expression of Dscam and Sidekick proteins at the developing mouse optic chiasm
The optic chiasm is an important midline choice point where retinal ganglion cell (RGC) axons from each eye diverge to targets on both sides of the brain, setting up binocular vision. While several cues essential for guidance at the optic chiasm have been identified, it is clear other signals are required. We have begun to investigate the role of the highly related homophilic cell adhesion mole...
متن کاملZic2 Patterns Binocular Vision by Specifying the Uncrossed Retinal Projection
During CNS development, combinatorial expression of transcription factors controls neuronal subtype identity and subsequent axonal trajectory. Regulatory genes designating the routing of retinal ganglion cell (RGC) axons at the optic chiasm to the appropriate hemisphere, a pattern critical for proper binocular vision, have not been identified. Here, we show that the zinc finger transcription fa...
متن کاملGlia, neurons, and axon pathfinding during optic chiasm development.
The importance of vision in the behavior of animals, from invertebrates to primates, has led to a good deal of interest in how projection neurons in the retina make specific connections with targets in the brain. Recent research has focused on the cellular interactions occurring between retinal ganglion cell (RGC) axons and specific glial and neuronal populations in the embryonic brain during f...
متن کامل13-P131 Pax6 is involved in the early hindbrain patterning in the chick embryo
The optic chiasm is an important midline choice point where retinal ganglion cell (RGC) axons from each eye diverge to targets on both sides of the brain, setting up binocular vision. While several cues essential for guidance at the optic chiasm have been identified, it is clear other signals are required. We have begun to investigate the role of the highly related homophilic cell adhesion mole...
متن کاملSegregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc.
The pattern of contralaterally and ipsilaterally projecting retinal ganglion cell (RGC) axons at the optic chiasm is essential for the establishment of binocular vision. Contralateral axons cross the chiasm midline as they progress from the optic nerve to the optic tract. In contrast, ipsilateral axons deviate from the chiasm and continue in the ipsilateral optic tract, avoiding the chiasm midl...
متن کامل